

Applying bibliometrics in research assessment and management ...

The real deal !

Dr. Thed van Leeuwen Presentation at the NARMA Meeting, 29th march 2017

Outline

- CWTS and Bibliometrics
- Detail and accuracy in bibliometric applications
- Normalization in bibliometrics
- Coverage in bibliometric studies
- Infamous bibliometric indicators What to avoid
- CWTS methodology basic indicators
- Advantages and disadvantages in bibliometric analysis

CWTS and Bibliometrics

Introduction of bibliometrics

- Quantitative analysis + the cognitive and organizational structure of science and technology
- Scientific communication journal publications
- Output and Impact, as measured through publications and citations
- Scientists express, through citations, a certain degree of influence of others on their own work
- Citations indicate influence or (inter)national visibility
 → Does not equal 'quality'

CWTS data system

- CWTS has a full bibliometric license from Thomson Reuters to conduct evaluation studies using the Web of Science.
- Our database covers the period 1981-2015/6.
- Some characteristics:
 - Over 46.000.000 publications.
 - Over 700.000.000 citation relations between source papers.
 - Author disambiguation tools are applied, linked with acquired experience
 - Various bases for field normalization
 - Continuous address cleaning tools being developed, related to the *Leiden Ranking*.
 - Contains reference sets for journal and field citation data.

A less neutral approach ...

- Bibliometric measures tend to shape what they measure
- Bibliometrics has some serious shortcomings
- Better not be used as a stand-alone tool
- There is a lot of academic debate on the meaning of citations

 However, we still consider bibliometric techniques helpful tools in the assessment of research performance and everything that comes with it

Coverage in bibliometric studies

Appropriateness of bibliometric analysis

Introduction

- The use of evaluative bibliometrics can only become meaningful when used in a the right context.
- Publication culture of the unit(s) under assessment are shaping that context.
- As such, any bibliometric study should start with an assessment of the adequacy of metrics in that particular context.
- Therefore, CWTS has developed methods to assess that fit of metrics in a certain context.

How to define adequate coverage ?

 In order to determine whether metrics applied in an assessment context are meaningful, one needs to know what is represented through the metrics.

- We distinguish two types of coverage:
 - Internal (from <u>inside</u> the perspective of the WoS)
 - **External** (from the perspective of a total output set)

Assessing the adequacy of WoS for bibliometrics: The *Internal* coverage method

- Look at publications in WoS across fields,
- Use the references given by the authors of the publications,
- Analyze the communication channels referred to,
- Usage of WoS journals as share of the total number of references is an indication of the relevance for the authors involved,
- Thereby constituting a basis for the usage of bibliometrics as evaluation tool !

Assessing the adequacy of WoS for bibliometrics: The *External* coverage method

- Use the list of publications of an organization, subject of a bibliometric analysis => here in Norway, one could use Cristin
- Match the submitted list with the WoS.
- Degrees of covered scientific outlets indicate the relevance of WoS journals.
- Thereby constituting a basis for the usage of bibliometrics as an evaluation tool !

Internal coverage in bibliometric studies

WoS Coverage in 2010 across disciplines

- Black=Excellent coverage (>80%)
- Blue= Good coverage (between 60-80%)
- Green= Moderate coverage (but above 50%)
- Orange= Moderate coverage (below 50%, but above 40%)
- Red= Poor coverage (highly problematic, below 40%)

% Coverage of references in WoS

External coverage in bibliometric studies

Difference between the internal registration system & representation WoS

Dominance university hospital in WoS realm extremely visible

• Law and Humanities 'disappear' in WoS realm

Composition of the output of the university in METIS

- The category General is in some cases voluminous
- All units do have journal publications !

VTS

Let us get started: Selection of indicators

What indicators are considered as valid in research assessment contexts?

- Absolute numbers: publications
 - Too little specific, only focus on productivity
- Absolute numbers: citations
 - Too little specific, as well as too much dependent on field
- Average numbers: publications
 - Related to the number of staff involved, in combination with field specific publication culture
- Average numbers: citations
 - Combining the disadvantages of the two previous options, namely field specific production and reference cultures.

Dutch evaluation system: SEP protocol

- System approved by VSNU-KNAW-NWO
 - Focus on Institute/Department
 - Stay away from productivity as indicator
 - Include Societal Relevance as dimension
 - Peer review is central
- Applies also on non-academic research
- Periodical/disciplinary by nature

The landscape of Dutch Psychology research

What if ... ?

• When we use the Journal Impact Factor (JIF) ?

• When we use the h-index ?

Definitions of Journal Impact Factor & Hirsch Index

• Definition of JIF:

- The mean citation score of a journal, determined by dividing all citations in year T by all citable documents in years T-1 and T-2.
- Definition of h-index:
 - The 'impact' of a researcher, determined by the number of received citations of an oeuvre, sorted by descending order, where the number of received citations on that single paper equals the rank position.

Departments sorted by FTe			Sun valu	n of JIF Jes	Mean of JIF values	
	Pubs	tcs	mcs	t_JIFs	m_JIFs	
Psy Dept A	303	2741	9,05	882,75	2,91	
Psy Dept B	607	6252	10,30	1659,93	2,73	
Psy Dept C	1177	12358	10,50	3759,63	3,19	
Psy Dept D	1245	14851	11,93	4168,19	3,35	
Psy Dept E	1268	18945	14,94	4830,89	3,81	
Psy Dept F	1359	13686	10,07	4081,37	3,00	
Psy Dept G	1554	17595	11,32	5281,18	3,40	
Psy Dept H	1574	16940	10,76	5062,70	3,22	
Psy Dept I	1632	28359	17,38	7412,37	4,54	
		[

... but what does the *Mean of JIF* values really mean ?

Problems with JIF

- Methodological issues
 - Was/is calculated erroneously (Moed & van Leeuwen, 1996)
 - Not field normalized
 - Not document type normalized
 - Underlying citation distributions are highly skewed (Seglen, 1994)
- Conceptual/general issues
 - Inflation (van Leeuwen & Moed, 2002)
 - Availability promotes journal publishing
 - Is based on expected values only
 - Stimulates one-indicator thinking
 - Ignores other scholarly virtues

A policy related question

- What is the status of our current work force, compared to a previous situation ?
- People move, so what happened in time with new staff members coming in, and others move out ?
- Therefore, two analyses are made:

1) consisting of all staff appointed previously, that left/retired, etc.

- Output of the institute alone, nothing more
- 2) consisting of staff that is currently appointed
 - Output from elsewhere as well

Mobility analysis and h-index values

	H-index	-index		
	PastPerf	n_cits	ResPot	n_cits
Psy Dept A	22	23	25	26
Psy Dept B	34	34	35	34
Psy Dept C	42	42	42	42
Psy Dept D	43	44	47	48
Psy Dept E	58	58	55	56
Psy Dept F	43	43	44	44
Psy Dept G	48	49	50	50
Psy Dept H	45	45	47	48
Psy Dept I	70	71	74	74
All	101	101	103	104

... but how to interprete the h-index values for a department, against the national score ?

Problems with H-index

- Bibliometric-mathematical issues
 - mathematically inconsistent (Waltman & van Eck, 2012)
 - conservative
 - Not field normalized (van Leeuwen, 2008)
- Bibliometric-methodological issues
 - How to define an author?
 - In which bibliographic/metric environment?
- Conceptual/general issues
 - Favors age, experience, and high productivity (Costas & Bordons, 2006)
 - No relationship with research quality
 - Ignores other elements of scholarly activity
 - Promotes one-indicator thinking

CWTS methodology: basic indicators

Indicators suitable for assessment (1)

p: the number of publications of a unit, in a certain period.

tcs: The total number of citations received in a certain period.

mcs: the mean citation score of the oeuvre of a unit.

% not cited: the share of that oeuvre that is not cited.

% self citations: the share of citations given by the (co-)authors.

Indicators suitable for assessment (2)

mncs: the comparison of the actual impact with expected field average impact scores.

mnjs: comparison of the journals in which the unit published, with the field average impact in which the output was published.

internal coverage: indicates relevance of the bibliometric analysis, based on reference behavior of units themselves.

Top 10%: The share of the output that belongs to the top 10% most highly cited in the fields the unit is active in.

Various additional types of analysis focus on ...

- **Research profiles**: a break down of the output over various fields of science.
- Scientific cooperation analysis: a break down of the output over various types of scientific collaboration.
- Knowledge user analysis: a break down of the 'responding' output into citing fields, countries or institutions.
- Network analysis: how is the network of partners composed, based on scientific cooperation?

	р	tcs	mcs	% not cited	% selfcits
Psy Dept A	298,75	1933,75	6,47	18%	29%
Psy Dept B	608,25	4867,25	8,00	13%	23%
Psy Dept C	1164,50	9448,50	8,11	15%	23%
Psy Dept D	1245,00	11761,00	9,45	13%	22%
Psy Dept E	1260,50	15009,75	11,91	11%	21%
Psy Dept F	1335.50	10163.50	7.61	15%	26%
Psy Dept G	1543.00	13556.25	8.79	14%	23%
Psy Dept H	1563.25	12970 75	8 30	15%	23%
Psy Dept I	1614,50	20913,75	12,95	13%	26%

	mncs	mnjs	Internal coverage	% collab	% int collab
Psy Dept A	1,12	1,05	76%	86%	42%
Psy Dept B	1,44	1,24	80%	79%	46%
Psy Dept C	1,37	1,28	79%	72%	42%
Psy Dept D	1,30	1,25	85%	78%	36%
Psy Dept E	1,64	1,44	85%	78%	49%
Psy Dept F	1,24	1,25	79%	83%	42%
Psy Dept G	1,33	1,24	84%	80%	53%
Psy Dept H	1,40	1,28	80%	79%	41%
Psy Dept I	1,84	1,69	84%	86%	52%

National analysis of academic medical centers

Annual monitoring of research performance of Dutch university medical centers (UMCs)

- Integration of medical faculty with the academic hospital
- Analysis on internal structure, combined with a national perspective.
- National comparison is standard, local analysis is custom made
- Data delivery by own formats

The landscape of Dutch UMC's

Overall tables and trend analysis (1998-2014/2015)

	р	tcs	mcs	mncs	mnjs	pp_top_ perc	pp_unci ted	prop_self _cits	int_cov
Erasmus MC	32338	1052533	32,55	1,65	1,42	18%	5%	16%	89%
LU MC	23572	724565	30,74	1,52	1,38	17%	5%	17%	92%
Radboud UMC	24826	655694	26,41	1,47	1,33	16%	5%	17%	90%
UMC Maastricht	22548	662294	29,37	1,54	1,28	16%	5%	15%	87%
UMCG	21833	534729	24,49	1,44	1,36	16%	6%	17%	90%
UUUMC	24724	765568	30,96	1,59	1,43	18%	5%	15%	91%
UvA AMC	31335	868131	27,70	1,51	1,36	17%	6%	16%	90%
VUmc	22405	689691	30,78	1,66	1,36	19%	6%	16%	89%

Landscaping: mapping the situation for the UMCs

- Showing positions of UMCs, combining output and impact (mncs) and journal impact (mnjs)
 - Overall
 - Scientific cooperation analysis
 - Academic leadership

Landscaping: Overall output and field impact (2010-2014/15)

Conclusions:

6 produce between

8.000-10.000 papers, 2

stand out

- Impact varies between
 60-80% above world
 average
- 2 behave 'counter intuitive'!

Landscaping: Overall output and journal impact (2010-2014/15)

Conclusions:

 Choice for high impact journals

- Positions of journals
 varies between 40 55% above field
 average
- 3 publish in top journals

Landscaping: Overall output and field impact, first authorships, (2010-2014/15)

- **Conclusions:**
 - Output and impact decreases
 - Partial dependence
 on contributions
 from elsewhere
 - Still a strong
 position, far above
 world field average

Landscaping: Overall output and field impact, single institute output, (2010-2014/15)

Conclusions:

- Small part of the output of UMCs
- Academic leadership is visible, as this indicates the strength in the house
- Impact is still above world average impact level

Landscaping: Overall output and field impact, international collaboration, (2010-2014/15)

- **Conclusions:**
 - Large parts of the output result from international cooperation
 - Impact levels are very high
 - Dutch UMCs are
 - attractive partners !

Research profiles, output and impact displayed

- Based upon output distribution over fields (WoS JSCs).
- Impact indicators are mncs and mnjs.
- We now apply WoS JSCs for normalization

On normalization in bibliometric analysis

- The use of normalization is *conditio sine qua non* in applying bibliometric techniques.
- The most used system is the one based upon Web of Science Journal Subject Categories, which fits the multidisciplinary nature of the Web of Science.
- However, this most applied system, that of Journal Subject Categories, has serious drawbacks *

* Van Eck, N.J., et al (2013). <u>Citation analysis may severely underestimate the impact of</u> <u>clinical research as compared to basic research</u>. PLoS ONE, 8(4), e62395. <u>arXiv:1210.0442</u>

Journal Subject Category "Clinical Neurology"

Some conclusions on normalization

- Therefore, CWTS has developed methods to normalize in a different way, avoiding these problems.
- Preferred is the CWTS Publication Cluster dataset.
- However, normalization and level of aggregation remain in a complex relationship.
- We have to remain aware of the other meaning of the word normalization, and avoid that this becomes a straight jacket.

Research profile focused on overall impact level

Conclusions

- Easy way to view the most prolific activities
 Output shares and impact are viewed in one glance
- Also smaller fields(>1%) become visible

Research profile indicating journal impact levels

Conclusions

- Here journal impact is the impact indicator
- In a glance, one
 observes selectivity and
 success in publication
 strategies
- Again, also in less prolific fields

Top paper analysis, output and impact displayed

- Based upon output distribution over fields (WoS JSCs).
- Impact indicators are mncs and mnjs.
- We now apply WoS JSCs for normalization
- Preferred is the CWTS Publication Cluster dataset.

Top paper analysis: visibility among the top x% in the field

Top paper analysis: activity and impact in top General Medicine journals

Conclusions

- Impact is very high
- Here mcs is a valid
 - indicator
- A small output can generate a large audience

Advantages and disadvantages of bibliometric analysis

Some disadvantages of applying bibliometrics ...

- Steers away from more qualitative considerations.
- Metrics shape as much as they measure scientific activity.
- People tend to forget we are talking about *'indicators'*.
- Tends to stimulate one-dimensional thinking.
- It requires skills to calculate and interpret results.

Some advantages of applying bibliometrics ...

- Metrics tend to offer insights into underlying structures and patterns.
- Metrics tend to be a strong complementary tool to peer review.
- Metrics tend to be relatively stable in time.

Some conclusions ...

- Bibliometrics should always be combined with peer review,
- ... and preferably conducted by skilled experts !
- Always contextualize the bibliometric scores !
- One better avoids the '*Quick & Dirty*' indicators !
- Advanced bibliometrics can be very helpful in research management, at various levels.

Thank you for your attention! Any questions? Ask me now, or mail me Leeuwen@cwts.nl

