

Applying bibliometrics in research assessment and management ... It's complicated !

Dr. Thed van Leeuwen Presentation at the NARMA Meeting, 14th April 2015

Outline

- CWTS and Bibliometrics
- Detail and accuracy in bibliometric applications
- Normalization in bibliometrics
- Coverage in bibliometric studies
- Infamous bibliometric indicators What to avoid
- CWTS methodology basic indicators
- Advantages and disadvantages in bibliometric analysis

What is bibliometrics ?

- Quantitative analysis of science & technology, and the study of cognitive and organizational structures in science and technology.
- Scientific communication between scientists through (mainly) journal publications.
- Key concepts are **output** and **impact**, as measured through publications and citations.
- Important starting point in bibliometrics: scientists express, through citations in their scientific publications, a certain degree of influence of others on their own work.
- By large scale quantification, citations indicate (inter)national influence or (inter)national visibility of scientific activity, but should not be interpreted as synonym for 'quality'.

CWTS data system

- CWTS has a full bibliometric license from Thomson Reuters to conduct evaluation studies using the Web of Science.
- Our database covers the period 1981-2014/5.

Some characteristics:

- Over 41.000.000 publications.
- Over 600.000.000 citation relations between source papers.
- Author disambiguation tools are applied, linked with acquired experience
- Continuous address cleaning tools being developed, related to the *Leiden Ranking*.
- Contains reference sets for journal and field citation data.

Detail and accuracy in bibliometric applications

Tension between detail and accuracy: Duhem's 'Law of Cognitive Complementarity' *

INCREASING DETAIL (d)

- An inverse relationship exists between the precision of our information, and its' substantiation
- Detail and security / accuracy stand in a competing relationship !

* 'Epistemetrics' by Nicolas Rescher (2006)

• We estimate the size of the tree at *around* 8 mtr.

- We are *quite sure* that the tree is between 6-12 mtr. high.
- We are *virtually certain* that ist height is between 3-18 mtr.
- But we can be *completely* and absolutely sure that its height is between 1 mtr and 56 mtr.

Levels of aggregation in bibliometric analysis

- We distinguish various levels of analysis:
 - Macro-level, e.g. country and region comparison for the EU, Dutch Observatory of S&T.
 - **Meso-level**, e.g. research organizations, universities, institutes.
 - *Micro-level*, e.g. analysis of programs, groups, or even, increasingly, individual researchers.

Bibliometrics can be applied on all three levels of analysis, however, every level brings it's own requirements !!!

сwтs

Data collection in bibliometric analysis

- Roughly, we can distinguish three methods for the collection of a set of publications:
 - Based on a list of names of researchers (verification through a website creates a valid dataset)
 - Based on a list of publications of a unit (the supplied lists form the authorized/verified dataset)
 - Based on the address of an institute or unit (this approach does not allow lower level insights and conclusions)

We work with various methods, macro-level studies usually exclude the first two methods.

RESEARCH PROFILE OUTPUT AND IMPACT PER FIELD 2005 - 2009/2010

FIELD (MNCS)

ONCOLOGY (1.21) CARD&CARDIOV SYS (1.78) HEMATOLOGY (1.31) ENDOCRIN&METABOL (1.16) IMMUNOLOGY (1.18) RHEUMATOLOGY (2.00) GENETICS&HEREDIT (1.77) RAD,NUCL MED IM (1.24) CLIN NEUROLOGY (1.37) BIOCHEM&MOL BIOL (1.23) PERIPHI, VASC DIS (1.43) MEDICINE, GEN&INT (3.63) NEUROSCIENCES (1.21) SURGERY (1.83) OBSTETRICS&GYNEC (1.28) UROLOGY&NEPHROL (1.66) PHARMACOL&PHARMA (1.21) GASTROENTEROLOGY (1.47) PEDIATRICS (1.49) CELL BIOLOGY (1.32) PSYCHIATRY (1.24) MICROBIOLOGY (1.75) RESPIRATORY SYST (2.13) PUBL ENV OCC HLT (1.68) VIROLOGY (1.10) PATHOLOGY (1.43) INFEC DISEASE (1.23) MEDICINE, RES&EXP (1.64) Share of the output (%) AVERAGE IMPACT: LOW [HIGH

Example of a so-called *Research Profile*

- Profile of Leiden University Medical Center
- In *Immunology* they're not as strong as in other medical disciplines.
- However, this does not automatically mean that the Dept. of Immunology is performing at that level !

Disconnect between organizational units & fields

On normalization in bibliometric analysis

- The use of normalization is *conditio sine qua non* in applying bibliometric techniques.
- The most used system is that Journal Subject Categories, which fits the multidisciplinary nature of the Web of Science.
- However, the most applied system, that of Journal Subject Categories, has serious drawbacks *

Journal Subject Category "Clinical Neurology"

Some conclusions on normalization

- Therefore, CWTS has developed methods to normalize in a different way, avoiding these problems.
- However, normalization and level of aggregation remain in a complex relationship.
- We have to remain aware of the other meaning of the word normalization, and avoid that this becomes a straight jacket.

Introduction

- The use of evaluative bibliometrics can only become meaningful when used in a the right context.
- Publication culture of the unit(s) under assessment are shaping that context.
- As such, any bibliometric study should start with an assessment of the adequacy of metrics in that particular context.
- Therefore, CWTS has developed methods to assess that fit of metrics in a certain context.

How to define adequate coverage ?

- In order to determine whether metrics applied in an assessment context are meaningful, one needs to know what is represented through the metrics.
- We distinguish two types of coverage:
 - **Internal** (from <u>inside</u> the perspective of the WoS)
 - **External** (from the perspective of a total output set)

Assessing the adequacy of WoS for bibliometrics: The *Internal* coverage method

- Look at publications in WoS across fields,
- Use the references given by the authors of the publications,
- Analyze the communication channels referred to,
- Usage of WoS journals as share of the total number of references is an

indication of the relevance for the authors involved,

- Thereby constituting a basis for the usage of bibliometrics as evaluation tool !

Assessing the adequacy of WoS for bibliometrics: The *External* coverage method

- Use the list of publications of an organization, subject of a bibliometric analysis.
- Match the submitted list with the WoS.
- Degrees of covered scientific outlets indicate the relevance of WoS journals.
- Thereby constituting a basis for the usage of bibliometrics as an evaluation tool !

Internal coverage in bibliometric studies

% Coverage of references in WoS

WoS Coverage in 2010 across disciplines

- Black=Excellent coverage (>80%)
- Blue= Good coverage (between 60-80%)
- Green= Moderate coverage (but above 50%)
- Orange= Moderate coverage (below 50%, but above 40%)
- Red= Poor coverage (highly problematic, below 40%)

External coverage in bibliometric studies

External coverage & journal literature (i)

- Production is spread across disciplines.
- In Web of Science, Biomedicine is dominant !

External coverage & journal literature (ii)

Ссктя

Journal publishing is important in all disciplines !

Definitions of Journal Impact Factor & Hirsch Index

• Definition of JIF:

 The mean citation score of a journal, determined by dividing all citations in year T by all citable documents in years T-1 and T-2.

• Definition of h-index:

 The 'impact' of a researcher, determined by the number of received citations of an oeuvre, sorted by descending order, where the number of received citations on that single paper equals the rank position.

Problems with JIF

Methodological issues

- Was/is calculated erroneously (Moed & van Leeuwen, 1996)
- Not field normalized
- Not document type normalized
- Underlying citation distributions are highly skewed (Seglen, 1994)

Conceptual/general issues

- Inflation (van Leeuwen & Moed, 2002)
- Availability promotes journal publishing
- Is based on expected values only
- Stimulates one-indicator thinking
- Ignores other scholarly virtues

Deconstructing the myth of the JIF...

- Take the Dutch output
- Similar journal impact classes
- Focus on publications that belong to the top 10% of their field

Problems with H-index

Bibliometric-mathematical issues

- mathematically inconsistent (Waltman & van Eck, 2012)
- conservative
- Not field normalized (van Leeuwen, 2008)

• Bibliometric-methodological issues

- How to define an author?
- In which bibliographic/metric environment?

Conceptual/general issues

- Favors age, experience, and high productivity (Costas & Bordons, 2006)
- No relationship with research quality
- Ignores other elements of scholarly activity
- Promotes one-indicator thinking

The problem of fields and h-index ...

- Spinoza candidates, across all domains ...
- Use output, normalized impact, and h-index

In what database context ... ?

Selected my own publications in WoS and Scopus, Google Scholar has a pre-set profile.

Database	H-index	Based upon
Web of Science	14	Articles in journals
Scopus	25	Articles, book (chapters), and conference proceedings papers
Google Scholar	33	All types, incl. Reports

34

CWTS methodology: basic indicators

Indicators suitable for assessment (1)

p: the number of publications of a unit, in a certain period. *tcs:* The total number of citations received in a certain period. *mcs:* the mean citation score of the oeuvre of a unit.

% not cited: the share of that oeuvre that is not cited.

% self citations: the share of citations given by the (co-)authors.

36

Indicators suitable for assessment (2)

mncs: the comparison of the actual impact with expected field average impact scores.

mnjs: comparison of the journals in which the unit published, with the field average impact in which the output was published.

internal coverage: indicates relevance of the bibliometric analysis, based on reference behavior of units themselves.

Top 10%: The share of the output that belongs to the top 10% most highly cited in the fields the unit is active in.

Various additional types of analysis focus on ...

- *Research profiles:* a break down of the output over various fields of science.
- *Scientific cooperation analysis:* a break down of the output over various types of scientific collaboration.
- *Knowledge user analysis:* a break down of the 'responding' output into citing fields, countries or institutions.
- *Network analysis:* how is the network of partners composed, based on scientific cooperation?

Advantages and disadvantages of bibliometric analysis Some disadvantages of applying bibliometrics ...

- Steers away from more qualitative considerations.
- Metrics shape as much as measure scientific activity.
- People tend to forget we are talking about *'indicators'*.
- Tends to stimulate one-dimensional thinking.
- It requires skills to calculate and interpret results.
-

Some advantages of applying bibliometrics ...

- It offers insights into underlying structures and patterns.
- It is a strong complementary tool to peer review.
- It is relatively stable in time.
-

We have not dealt with ...

- The historical-social sciences perspective on the origins of the rise of bibliometrics in the nowadays science system.
- University rankings and all their problems.
- Bibliometric mapping and network methodologies.
- 'Address' and 'Author' issues when collecting data.
- Open Access and the 'issues' in relation to evaluation
- ...

Some conclusions ...

- Bibliometrics should always be combined with peer review,
- ... and preferably conducted by skilled experts !
- Always contextualize the bibliometric scores !
- One better avoids the '*Quick & Dirty*' indicators !
- Advanced bibliometrics can be very helpful in research management, at various levels.

Thank you for your attention!

Any questions? Ask me now, or mail me Leeuwen@cwts.nl

44